

GA OPTIMISATION OF NON-SINGLETON FUZZY LOGIC FOR ECG CLASSIFICATION

Chua Teck Wee and Tan Woei Wan

1. Objective

Investigate if NSFLS evolved using genetic algorithm (GA) can better cope with the fuzziness present in the extracted features compared to SFLS.

Advantages of NSFLS:

Noise suppression capability

True signal $m_{X_k} = m_{X_{k0}} + n_k$

With minimum inference method, the input is transformed into :

$$x_{\max}^{l} = \frac{\sigma_{X_{k0}} m_{F_{k}^{l}} + \sigma_{F_{k}^{l}} m_{F_{k}^{l}}}{\sigma_{X_{k0}} + \sigma_{F_{k}^{l}}} + \frac{\sigma_{F_{k}^{l}} n_{k}}{\sigma_{X_{k0}} + \sigma_{F_{k}^{l}}}$$

Fuzzy decision boundary

Suitable to classify data with nondistinct boundary!

3. Application to ECG Classification

Period is easier to extract but the boundary is nondistinct compared to amplitude.

Rule-base:

IF x_i is Fi and x_2 is F_j , THEN C_k where i, j = 1, 2, 3 (small, medium, large) and k = 1, 2, 3, 4 (CT, NSR, VF, VT).

Inference method:

max-min → winner takes all

GA optimisation

Chromosome

$m_{x_1}^1$	$\sigma^{\scriptscriptstyle 1}_{\scriptscriptstyle x_{\scriptscriptstyle 1}}$		$m_{x_2}^3$	$\sigma^{\scriptscriptstyle 3}_{\scriptscriptstyle x_2}$	r_1		<i>r</i> ₉	
Antecedent sets					Rules			

- Single-point crossover with rate = 0.8
- Bit-wise flipping mutation with rate = 0.03

Results

Input	Amplitud	e & Width	Period & Width		
Classifier	SFLS	NSFLS	SFLS	NSFLS	
Accuracy (%)	98.33	100.00	91.67	99.44	

NSFLS achieves good accuracy using features that are easier to extract, but contain more uncertainties.